p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.249C23, C4⋊C4.71D4, C8⋊1C8⋊23C2, C4.Q16⋊7C2, C8⋊4Q8⋊26C2, (C2×C8).187D4, (C2×Q8).61D4, C4⋊C8.34C22, C4.D8.5C2, C4.4D8.9C2, C4⋊Q8.70C22, C4.104(C4○D8), C2.13(C8⋊D4), C4.44(C8⋊C22), (C4×C8).215C22, C4⋊SD16.10C2, C4.6Q16⋊19C2, (C4×Q8).49C22, C4⋊1D4.37C22, C4.75(C8.C22), C2.17(D4.4D4), C2.12(Q8.D4), C22.210(C4⋊D4), (C2×C4).34(C4○D4), (C2×C4).1284(C2×D4), SmallGroup(128,430)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.249C23
G = < a,b,c,d,e | a4=b4=c2=1, d2=ab2, e2=b2, ab=ba, cac=a-1, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, dcd-1=a-1c, ece-1=bc, ede-1=a2d >
Subgroups: 200 in 78 conjugacy classes, 32 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C2×D4, C2×Q8, C2×Q8, C4×C8, C8⋊C4, D4⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C2.D8, C4×Q8, C4⋊1D4, C4⋊Q8, C2×SD16, C4.D8, C4.6Q16, C8⋊1C8, C8⋊4Q8, C4⋊SD16, C4.Q16, C4.4D8, C42.249C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C4⋊D4, C4○D8, C8⋊C22, C8.C22, Q8.D4, C8⋊D4, D4.4D4, C42.249C23
Character table of C42.249C23
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 1 | 1 | 16 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | complex lifted from C4○D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | -√2 | √-2 | √2 | -√-2 | 0 | 0 | complex lifted from C4○D8 |
ρ16 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | √2 | √-2 | -√2 | -√-2 | 0 | 0 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | √2 | -√-2 | -√2 | √-2 | 0 | 0 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | -√2 | -√-2 | √2 | √-2 | 0 | 0 | complex lifted from C4○D8 |
ρ19 | 4 | -4 | 4 | -4 | 0 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 0 | 0 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ21 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 0 | 0 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ22 | 4 | -4 | 4 | -4 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 54 5 50)(2 55 6 51)(3 56 7 52)(4 49 8 53)(9 61 13 57)(10 62 14 58)(11 63 15 59)(12 64 16 60)(17 27 21 31)(18 28 22 32)(19 29 23 25)(20 30 24 26)(33 46 37 42)(34 47 38 43)(35 48 39 44)(36 41 40 45)
(1 61 52 11)(2 62 53 12)(3 63 54 13)(4 64 55 14)(5 57 56 15)(6 58 49 16)(7 59 50 9)(8 60 51 10)(17 36 25 47)(18 37 26 48)(19 38 27 41)(20 39 28 42)(21 40 29 43)(22 33 30 44)(23 34 31 45)(24 35 32 46)
(2 55)(3 7)(4 53)(6 51)(8 49)(9 63)(10 16)(11 61)(12 14)(13 59)(15 57)(17 36)(18 42)(19 34)(20 48)(21 40)(22 46)(23 38)(24 44)(25 47)(26 39)(27 45)(28 37)(29 43)(30 35)(31 41)(32 33)(50 54)(58 60)(62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 21 52 29)(2 18 53 26)(3 23 54 31)(4 20 55 28)(5 17 56 25)(6 22 49 30)(7 19 50 27)(8 24 51 32)(9 38 59 41)(10 35 60 46)(11 40 61 43)(12 37 62 48)(13 34 63 45)(14 39 64 42)(15 36 57 47)(16 33 58 44)
G:=sub<Sym(64)| (1,54,5,50)(2,55,6,51)(3,56,7,52)(4,49,8,53)(9,61,13,57)(10,62,14,58)(11,63,15,59)(12,64,16,60)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26)(33,46,37,42)(34,47,38,43)(35,48,39,44)(36,41,40,45), (1,61,52,11)(2,62,53,12)(3,63,54,13)(4,64,55,14)(5,57,56,15)(6,58,49,16)(7,59,50,9)(8,60,51,10)(17,36,25,47)(18,37,26,48)(19,38,27,41)(20,39,28,42)(21,40,29,43)(22,33,30,44)(23,34,31,45)(24,35,32,46), (2,55)(3,7)(4,53)(6,51)(8,49)(9,63)(10,16)(11,61)(12,14)(13,59)(15,57)(17,36)(18,42)(19,34)(20,48)(21,40)(22,46)(23,38)(24,44)(25,47)(26,39)(27,45)(28,37)(29,43)(30,35)(31,41)(32,33)(50,54)(58,60)(62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,21,52,29)(2,18,53,26)(3,23,54,31)(4,20,55,28)(5,17,56,25)(6,22,49,30)(7,19,50,27)(8,24,51,32)(9,38,59,41)(10,35,60,46)(11,40,61,43)(12,37,62,48)(13,34,63,45)(14,39,64,42)(15,36,57,47)(16,33,58,44)>;
G:=Group( (1,54,5,50)(2,55,6,51)(3,56,7,52)(4,49,8,53)(9,61,13,57)(10,62,14,58)(11,63,15,59)(12,64,16,60)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26)(33,46,37,42)(34,47,38,43)(35,48,39,44)(36,41,40,45), (1,61,52,11)(2,62,53,12)(3,63,54,13)(4,64,55,14)(5,57,56,15)(6,58,49,16)(7,59,50,9)(8,60,51,10)(17,36,25,47)(18,37,26,48)(19,38,27,41)(20,39,28,42)(21,40,29,43)(22,33,30,44)(23,34,31,45)(24,35,32,46), (2,55)(3,7)(4,53)(6,51)(8,49)(9,63)(10,16)(11,61)(12,14)(13,59)(15,57)(17,36)(18,42)(19,34)(20,48)(21,40)(22,46)(23,38)(24,44)(25,47)(26,39)(27,45)(28,37)(29,43)(30,35)(31,41)(32,33)(50,54)(58,60)(62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,21,52,29)(2,18,53,26)(3,23,54,31)(4,20,55,28)(5,17,56,25)(6,22,49,30)(7,19,50,27)(8,24,51,32)(9,38,59,41)(10,35,60,46)(11,40,61,43)(12,37,62,48)(13,34,63,45)(14,39,64,42)(15,36,57,47)(16,33,58,44) );
G=PermutationGroup([[(1,54,5,50),(2,55,6,51),(3,56,7,52),(4,49,8,53),(9,61,13,57),(10,62,14,58),(11,63,15,59),(12,64,16,60),(17,27,21,31),(18,28,22,32),(19,29,23,25),(20,30,24,26),(33,46,37,42),(34,47,38,43),(35,48,39,44),(36,41,40,45)], [(1,61,52,11),(2,62,53,12),(3,63,54,13),(4,64,55,14),(5,57,56,15),(6,58,49,16),(7,59,50,9),(8,60,51,10),(17,36,25,47),(18,37,26,48),(19,38,27,41),(20,39,28,42),(21,40,29,43),(22,33,30,44),(23,34,31,45),(24,35,32,46)], [(2,55),(3,7),(4,53),(6,51),(8,49),(9,63),(10,16),(11,61),(12,14),(13,59),(15,57),(17,36),(18,42),(19,34),(20,48),(21,40),(22,46),(23,38),(24,44),(25,47),(26,39),(27,45),(28,37),(29,43),(30,35),(31,41),(32,33),(50,54),(58,60),(62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,21,52,29),(2,18,53,26),(3,23,54,31),(4,20,55,28),(5,17,56,25),(6,22,49,30),(7,19,50,27),(8,24,51,32),(9,38,59,41),(10,35,60,46),(11,40,61,43),(12,37,62,48),(13,34,63,45),(14,39,64,42),(15,36,57,47),(16,33,58,44)]])
Matrix representation of C42.249C23 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 16 | 0 |
0 | 0 | 16 | 16 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 15 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 1 |
0 | 0 | 1 | 1 | 16 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 16 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 6 | 0 | 6 |
0 | 0 | 11 | 14 | 3 | 14 |
0 | 0 | 3 | 6 | 0 | 0 |
0 | 0 | 14 | 14 | 3 | 14 |
12 | 12 | 0 | 0 | 0 | 0 |
12 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 8 | 10 | 7 |
0 | 0 | 9 | 0 | 0 | 10 |
0 | 0 | 7 | 16 | 1 | 8 |
0 | 0 | 9 | 8 | 8 | 9 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,16,0,0,0,0,0,16,0,0,15,1,16,1,0,0,0,1,0,0],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,16,1,0,1,0,0,15,1,16,1,0,0,0,0,0,16,0,0,0,0,1,0],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,16,1,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,6,11,3,14,0,0,6,14,6,14,0,0,0,3,0,3,0,0,6,14,0,14],[12,12,0,0,0,0,12,5,0,0,0,0,0,0,7,9,7,9,0,0,8,0,16,8,0,0,10,0,1,8,0,0,7,10,8,9] >;
C42.249C23 in GAP, Magma, Sage, TeX
C_4^2._{249}C_2^3
% in TeX
G:=Group("C4^2.249C2^3");
// GroupNames label
G:=SmallGroup(128,430);
// by ID
G=gap.SmallGroup(128,430);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,512,422,387,352,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=c^2=1,d^2=a*b^2,e^2=b^2,a*b=b*a,c*a*c=a^-1,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=a^-1*c,e*c*e^-1=b*c,e*d*e^-1=a^2*d>;
// generators/relations
Export